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DroidDetector: Android Malware Characterization and Detection
Using Deep Learning

Zhenlong Yuan, Yongqiang Lu, and Yibo Xue�

Abstract: Smartphones and mobile tablets are rapidly becoming indispensable in daily life. Android has been the

most popular mobile operating system since 2012. However, owing to the open nature of Android, countless

malwares are hidden in a large number of benign apps in Android markets that seriously threaten Android

security. Deep learning is a new area of machine learning research that has gained increasing attention in artificial

intelligence. In this study, we propose to associate the features from the static analysis with features from dynamic

analysis of Android apps and characterize malware using deep learning techniques. We implement an online

deep-learning-based Android malware detection engine (DroidDetector) that can automatically detect whether an

app is a malware or not. With thousands of Android apps, we thoroughly test DroidDetector and perform an in-

depth analysis on the features that deep learning essentially exploits to characterize malware. The results show

that deep learning is suitable for characterizing Android malware and especially effective with the availability of

more training data. DroidDetector can achieve 96.76% detection accuracy, which outperforms traditional machine

learning techniques. An evaluation of ten popular anti-virus softwares demonstrates the urgency of advancing our

capabilities in Android malware detection.
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1 Introduction

Android dramatically surpassed a billion shipments of
its devices in 2014 and has remained the No.1 mobile
operating system since 2013, according to a recent
report from Gartner[1]. Android markets, such as the
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Google Play Store and other third-party markets, play
an important role in the popularity of Android devices.
However, the openness of Android makes these markets
hot targets for malware attacks[2, 3] and causes countless
instances of malware being hidden behind a large
number of benign apps that seriously threatens users’
security and privacy. Moreover, a report from McAfee
Labs reveals that 3.73 million pieces of mobile malware
were identified in 2013, increasing an astounding 197%
from the end of 2012[4]. Consequently, an urgent
need arises to develop powerful solutions for Android
malware detection. Unfortunately, the Android market
currently has no such solution.

Today, the main countermeasure to defense against
malware on Android platforms is a risk communication
mechanism that warns users about the permissions
required before installing each app. This mechanism
is rather ineffective[5, 6], as it presents permissions in a
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stand-alone fashion, thus requiring too much technical
knowledge for a user to be able to differentiate malware
from benign apps. Note that both a benign and a
malicious app may require the same permissions and
are thus indistinguishable via this permission-based
mechanism. In general, permission-based approaches
are developed primarily for risk assessment[7–10] rather
than malware detection.

Clearly, a better characterization of Android
malware would achieve a better accuracy in their
detection. DroidRanger[11] and RiskRanker[12], two
typical signature-based methods, try to characterize
malware using specific patterns in the bytecode and
Application Program Interfaces (API) calls. However,
these signature-based methods can be easily evaded by
bytecode-level transformation attacks[13]. It has been
pointed out that signature-based methods, such as those
presented in Refs. [12, 14], cannot catch several types
of code-loading-technique-based Android malware[15].

Previous research[16] has revealed that Android
malware is rapidly evolving to circumvent signature-
based characterizations and thus calls for the
development of next-generation anti-mobile-malware
solutions. Android malware evidently cannot be
adequately characterized using only specific patterns
(signatures). In view of this situation, machine-
learning-based methods are being proposed to
characterize Android malware that extract features
by the static[17–20] or dynamic analysis[21] of Android
apps and learn the distinctions between malware
and benign apps automatically. In particular, these
machine-learning-based methods can avoid the need
to manually craft and update detection rules, which is
crucial for keeping pace with the variety of Android
malware.

Deep learning[22] is a new area of machine learning
research that imitates the way the human brain
works and has gained increasing attention in the
field of artificial intelligence. It has motivated a
great number of successful applications in speech
recognition, image classification, and natural language
processing. Preliminary work in deep learning as it
applies to Android malware detection was presented
in Ref. [23]. In this study, we first extracted a
total of 192 features from static and dynamic app
analyses and then applied the deep learning technique
to distinguish malware from benign apps. Our premise
is that deep learning with a deep architecture can evolve
high-level representations by associating features from

static analysis with those from dynamic analysis,
which can then better characterize Android malware.
Experiments on a large number of real-world apps
show that deep learning is especially suitable for
characterizing Android malware and can achieve
a 96.76% detection accuracy, thereby significantly
outperforming traditional machine learning techniques,
such as Naı̈ve Bayes, C4.5, Logistic Regression,
Support Vector Machine (SVM), and Multi-layer
Perceptron.

In this study, our contributions include: (1) We
describe our development of a deep-learning-based
Android malware detection engine (DroidDetector)
that has been put online for user testing[24] and can
automatically detect whether an app is a malware
or not. (2) We crawl 20 000 apps from the Google
Play Store and collect 1760 malwares from the
well-known Contagio Community[25] and Genome
Project[26]. With these real-world apps, we thoroughly
test DroidDetector and perform an in-depth analysis
on the features that deep learning essentially exploits
to characterize malware using association rule mining
techniques. (3) We conduct experiments on ten popular
anti-virus softwares and reveal that they are extremely
vulnerable to repackaging attacks. In the light of our
analyses, we conclude that deep learning is a promising
technique for Android malware detection.

The rest of this study is organized as follows. In
Section 2, we present the extraction of a total of
192 features from static and dynamic app analyses.
In Section 3, we introduce the details of our deep
learning model and the design of DroidDetector. The
experiments we conducted on large-scale app sets
are described in Section 4. Finally, we offer a brief
discussion in Section 5 and draw our conclusions in
Section 6.

2 Feature Extraction

To systematically characterize Android apps (i.e., both
malware and benign apps), we conduct static and
dynamic analyses to extract features from each app,
as shown in Fig. 1. All the features fall under one of
three types: required permissions, sensitive APIs, and
dynamic behaviors. Among them, required permissions
and sensitive APIs are extracted through the static
analysis, whereas dynamic behaviors are extracted
through dynamic analysis. Specifically, all we need is
the installation file (i.e., apk file) of each Android app.
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Fig. 1 Feature extraction for an Android app.

In the static phase, we uncompress the .apk file with
the 7-Zip tool and then focus on parsing the two files
AndroidManifest.xml and classes.dex. By
parsing the Android Manifest.xml file with the
tool AXML-Printer2 and the parser TinyXml, we
can obtain the permissions required by the app. For
example, android.permission.call phone is
the permission required for an app to make a phone
call and android.permission.camera is the
permission required for an app to access the camera. In
this step, we looked for a total of 120 permissions. By
parsing the classes.dex file with the disassembler
baksmali, we can know which API functions are
called. For example, chmod is a sensitive API that
might be used for changing users’ permissions on files
and ContentResolver;->delete is a sensitive
API that might be used for deleting users’ messages
or contacts. In this step, we looked for a total of 59
sensitive API functions.

In the dynamic phase, we install and run each app in
DroidBox[27]. DroidBox is an Android application
sandbox that extends TaintDroid[28], which can execute
a dynamic taint analysis with system hooking at the
application framework level and monitor a variety
of app actions such as information leaks, network
and file input/output, cryptography operations, Short
Message Services (SMS), and mobile phone calls. In
this study, we ran the apps inside DroidBox for a
period of time to obtain the executed app actions (i.e.,
dynamic behaviors) of each app. In this phase, we
monitored a total of 13 app actions. For instance,
action sendnet is the action that sends data over
the network, action phonecalls is the action that

makes a phone call, and action sendsms is the
action that sends SMS messages.

In this way, we obtained a total of 192 features for
each app through static and dynamic analyses. Note that
each feature is binary, indicating that when a feature
occurs in an app, its feature value is 1; otherwise,
its feature value is 0. In addition, all the tools (i.e.,
7-Zip, AXMLPrinter2, TinyXml, baksmali,
and DroidBox) referred to in this section are open
source for use by the public.

3 Deep Learning Engine

Traditional machine learning models (e.g., SVM and
C4.5) that have less than three layers of computation
units are considered to have shallow architectures.
Fortunately, deep learning models with a deep
architecture change that situation. In practical use, a
deep learning model can be constructed with different
deep architectures[22], e.g., Deep Belief Networks
(DBN) and convolutional neural networks. For this
study, we chose DBN architecture to construct our deep
learning model and characterize Android apps.

As shown in Fig. 2, the construction of a deep
learning model has two phases, the unsupervised pre-
training phase and supervised back-propagation phases.
In the pre-training phase, the DBN is hierarchically
built by stacking a number of Restricted Boltzmann
Machines (RBM), with the deep neural network
regarded as a latent variable model, which is beneficial
for gradually evolving high-level representations. In the
back-propagation phase, the pre-trained DBN is fine-
tuned with labeled samples in a supervised manner.
The deep learning model uses the same app set in both
phases of the training process. In this way, the deep
learning model is completely built.

We implemented the Android malware detection
engine DroidDetector based on the deep learning

Unlabeled Android app samples Labeled Android app samples
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Fig. 2 Deep learning model constructed with DBN.
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model, as shown in Fig. 3. DroidDetector has been open
online[24] for user testing and can automatically detect
whether a submitted app is a malware or not. Once the
.apk file of an app is submitted, DroidDetector checks
its integrity and determines whether it is a complete,
correct, and legitimate Android application. Next,
DroidDetector executes a static analysis to obtain the
permissions and sensitive APIs that are used by this app.
Then, DroidDetector executes a dynamic analysis by
installing and running this app in DroidBox for a fixed
period of time. In this way, DroidDetector identifies the
dynamic behaviors that are being performed.

We have completely automated the static and
dynamic analyses of DroidDetector. Once the total
192 binary features described in Section 2 have been
collected, they are input in the deep learning model for
classification. The detection results, including detailed
information from the integrity check and both analyses,
are then reported to the users. Since the new types of
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Fig. 3 Framework of DroidDetector.

apps are constantly emerging, we have designed two
crawler modules. One is used for crawling benign apps
from the Google Play Store and the other is used for
crawling malware from well-known malware sources
(e.g., Contagio and Genome). Using this strategy, we
expect DroidDetector to keep pace with the evolution
of Android malware.

4 Evaluation

To validate the ability of the deep learning model to
detect Android malware and make an in-depth analysis
on the features that deep learning essentially exploits
to characterize malware, we conducted experiments on
three public app sets. One benign app set was randomly
crawled from the Google Play Store, which contains a
large-scale of 20 000 apps. Although there might be
a few malicious apps hidden among them, we regard
all of them as benign apps. Another two malicious
app sets were respectively collected from the Contagio
Community (there are only about 400 apps at present,
as we have accumulated for two years, 500 malicious
apps are collected) and Genome Project (including 1260
malicious apps). So, the total number of malicious apps
is 1760 while there are 20 000 benign apps.

4.1 Deep learning performs best

In the next part of the study, we mixed together an
equal number of malicious and benign apps. In doing
so, we obtained a training set and a test set, either of
which included 880 malicious and 880 benign randomly
selected apps. The following experiments were all
performed on these two app sets.

Several parameters need to be set when building
deep learning networks, including the number of layers,
number of neurons in each layer, contrastive divergence
(CD-k) value, and number of iterations. Table 1 shows

Table 1 Classification accuracies with different deep learning model constructions.

Number of layers Number of neurons
Benign apps Malicious apps

Overall accuracy (%)
Precision (%) Recall (%) Precision (%) Recall (%)

6 [150, 150, 150, 150, 150, 150] 97.45 95.68 95.76 97.50 96.59
5 [150, 150, 150, 150, 150] 97.93 91.36 91.91 98.07 94.72
4 [150, 150, 150, 150] 93.45 95.68 95.58 93.30 94.49
3 [170, 170, 170] 97.22 91.36 91.85 97.39 94.38
3 [150, 150, 150] 97.68 95.68 95.77 97.73 96.70
3 [130, 130, 130] 97.23 95.68 95.75 97.27 96.48
2 [170, 170] 92.94 95.68 95.55 92.73 94.20
2 [150, 150] 97.79 95.68 95.77 97.84 96.76
2 [130, 130] 97.83 92.16 92.59 97.95 95.06
1 [150] 97.23 95.68 95.75 97.27 96.48
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that the classification accuracy varies with the two key
factors (i.e., number of layers and number of neurons in
each layer). We can see that deep learning (DBN) can
achieve a 96.76% accuracy when setting the number of
layers to 2 and number of neurons in each layer to 150.
In addition, we can see that the average accuracy under
different model constructions is higher than 95%.

Moreover, we compared the classification accuracies
of the deep learning model with the traditional machine
learning models, as shown in Table 2. The five
machine learning models were all optimized to achieve
optimal accuracy using grid search techniques. We
tested four types of kernel functions (i.e., linear,
polynomial, radial basis, and sigmoid) for the SVM
to achieve the highest possible accuracy in this
experiment. From the table, we can clearly see that
the deep learning model significantly outperforms other
malware detection models, such as Naı̈ve Bayes, C4.5,
Logistic Regression, SVM, and Multi-layer Perceptron
(a conventional neural network).

Moreover, to evaluate whether it is valuable to
associate features from the static analysis with those
from the dynamic analysis, we conducted experiments
employing either static or dynamic features in the
construction of a deep learning model. From Table
2, we see that it is vital to combine features from
both static and dynamic analyses for effective malware
detection. As there are currently millions of apps, even
1% improvement in accuracy is invaluable for practical
use.

As noted above, although we regard all of the apps
crawled from the Google Play Store as benign, there
might be some malware concealed there. But while
there is no guarantee that all 20 000 apps are truely
benign and contain no malicious behavior, according
to the previous studies of the Google Play Store, their
malware infection rate is extremely low, especially after
Google deployed its Bouncer[29] service for malware

detection. For example, DroidRanger has reported an
infection rate of approximately 0.02% in the Google
Play Store, and RiskRanker reported an infection rate
of only 0.0038% (i.e., two malicious apps out of
52 208). Even if the real malware infection rate is higher
than these reported values, it is relatively very small
compared with the accuracy improvement associated
with the deep learning model. Moreover, note that
machine learning (including deep learning) techniques
are noise tolerant in training models. As such, we can
conclude that the few incidences of hidden malware
hardly influence our accuracy comparisons.

4.2 Features exploitation

Next, we conducted experiments on the app sets
introduced in Section 4.1. We performed an in-depth
analysis on the features exploited by deep learning to
distinguish malicious and benign apps using association
rule mining techniques. In these experiments, although
we used 880 malicious apps and 880 benign apps
in our analysis, we consider that the analysis results
only reflect trends in the feature differences between
them and are not absolute distinctions in real-world
situations. First, we examined the ten top-ranked
features in either malicious or benign classes. The
results show that they both have the same seven features
(i.e., Internet, action fdaccess, action accessdfiles,
java net url openconnection, action dexclass load,
action recvsaction, and access network state) and each
has three individual features (i.e., contentresolver query
(benign), java net httpurlconnection connect (benign),
httpclient execute (benign) and read phone state
(malicious), write external storage (malicious),
telephonymanager getdeviceid (malicious)). Thus we
obtained a total of 13 features from both classes.

As shown in Fig. 4, we calculated the ratio of
each of the 13 features existing in either class. We
can see that the same seven features have similar

Table 2 The comparison between deep learning and traditional machine learning models.

Input features Machine learning model
Benign apps Malicious apps Overall accuracy

(%)Precision (%) Recall (%) Precision (%) Recall (%)
Static & dynamic C4.5 98.01 67.27 75.09 98.64 82.95
Static & dynamic SVM 93.63 91.93 92.08 93.75 92.84
Static & dynamic Naı̈ve Bayes 90.27 75.91 79.22 91.82 83.86
Static & dynamic Logistic regression 91.91 46.48 64.18 95.91 71.19
Static & dynamic Multi-layer perceptron 97.88 78.75 82.22 98.30 88.52
Static & dynamic DBN 97.79 95.68 95.77 97.84 96.76

Static only DBN 97.77 79.89 83.00 98.18 89.03
Dynamic only DBN 67.09 83.41 78.08 59.09 71.25
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Fig. 4 Thirteen top-ranked features.

ratios in both classes, whereas those of the six
individual features are much different. In particular,
among the six individual features, read phone state
(a permission) and telephonymanager getdeviceid (a
sensitive API) are very different, whereas the difference
in the other four features is relatively small in
both classes. Note that both read phone state and
telephonymanager getdeviceid belong to the malicious
class, indicating that malicious apps may possibly tend
to use them to attack users’ mobile devices.

Next, we conducted experiments on the ten most
different features between the malicious and benign
classes. As shown in Fig. 5, we can see that the
read phone state and telephonymanager getdeviceid,
also listed in Fig. 4, are two of the most different
features as well. Although read sms (a permission) and
telephonymanager getline1number (a sensitive API)
do not appear in the ten top-ranked features, the
difference between them in the malicious and benign
classes is great and only occurs frequently in malicious
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Fig. 5 Ten most different features.

apps. Specifically, read sms is used for reading short
messages and telephonymanager getline1number is
used for obtaining a user’s phone number, possibly
indicating that malicious apps prefer to steal users’
sensitive information (i.e., SMS messages and phone
numbers).

Moreover, we can see that httpclient execute occurs
more frequently in benign apps than in malicious
apps. Particularly, httpclient execute is generally used
for requesting a remote HTTP service. This is an
interesting and counterintuitive finding because we
would expect that malicious apps would usually connect
to remote HTTP servers to transfer more data. Based on
this observation, however, malicious apps tend to use
other concealed ways (e.g., socket communications and
SMS messages) to secretly transmit data.

In addition, we can see that among the other five
most different features (i.e., send sms, write sms,
telephonymanager getsimserialnumber, receive sms,
and smsmanager sendtextmessage), three (i.e.,
send sms, write sms, and receive sms) are permissions,
whereas the other two are sensitive APIs. Only
telephonymanager getsimserialnumber is used to
obtain the serial number of SIM cards, and the others
all relate to SMS management. These five features
occur frequently in malicious apps but occur rarely
in benign apps. Although we used a large number of
malicious and benign apps in this analysis, the app
set is still relatively small compared with the millions
of existing apps in Android markets. Therefore, the
occurrence ratios of features in malicious and benign
classes presented herein are considered to only reflect
the trends of the feature differences between them and
not their absolute values.

Furthermore, we performed experiments on the
correlations among the 192 total features to dig out
the association rules that tend to be used only by
Android malware. Two measurement metrics exist:
support and confidence. The support supp(X) of an
itemset X is defined as the proportion of transactions
(apps) in the data (app) set, which contain the itemset
(multiple features), and confidence of a rule (X [ Y )
is defined as supp(X [ Y )/supp(X ) where Y represents
the malicious class. Specifically, M-support is defined
as the proportion of apps in the malicious class that
contain the itemset.

We used the Patient Rule Induction Method (PRIM)
bump hunting algorithm[30] which can learn a set of
association rules and maximize a target variable of
interest, to obtain the top ten 2-itemset association
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rules that have the maximum confidence values, as
shown in Table 3. In other words, these 2-itemset
association rules present the two features that tend to
be simultaneously used only by Android malware. For
this experiment, we eliminated the impacts of the five
most different 1-itemset rules, since they were already
shown in Fig. 5. Moreover, we continued mining the top
five 3-itemset rules after eliminating the impacts of the
top ten 2-itemset rules, the results of which are shown
in Table 3.

As noted in the previous subsection, while there
might be some malware hidden in the benign app set,
such a small proportion of malware does not influence
our results, since the focused features in the malicious
and benign classes display such significant differences.

4.3 More data is much better

In real-world situations, the ratio between malicious
and benign apps may not be 1:1, so we conducted
experiments with various ratios of malicious to benign
apps, including 1:1, 1:2, 1:5, 1:10, 1:20, 1:50, and
1:100. As shown in Table 4, we can see that more
training data leads to a better accuracy when the ratio

of malicious apps to benign apps is 1:1. Particularly,
deep learning can achieve a high level of 96.60%
detection accuracy when the training number of either
class reaches 500. Moreover, we can see that although
the precision and recall of malicious class fluctuates to
some extent, the overall accuracy rises to near 100%
with increased proportions of benign apps. We consider
that this fluctuation of malicious class is reasonable
since the ratio of malicious apps to benign apps is
so lopsided, and there are too few malicious apps in
the training and test sets. However, we believe that
the classification accuracy of malicious class could
be further improved by training with more malicious
samples even under this lopsided ratio, because “deep
learning happens to have the property that if you feed it
more data it gets better and better”[31].

It is hard to make fair comparisons between the
deep learning model and real-world anti-virus softwares
because we do not know the number of malicious
and benign apps used (or trained) by each anti-virus
software to detect unknown apps. It is possible that the
public apps we used for testing have also been collected

Table 3 Association rules mining based on the PRIM algorithm.

Number of
items

Association rules (1 represents its occurrence while 0 represents not)
M-support

(%)
Confidence

(%)
2 [READ PHONE STATE=1, DEFAULTHTTPCLIENT EXECUTE=0] 56 99.7
2 [READ SMS=1, READ PHONE STATE=1] 50 99.8
2 [READ SMS=1, GET ACCOUNTS=0] 48 99.7
2 [READ SMS=1, ACCESS NETWORK STATE=1] 46 99.8
2 [READ SMS=1, TELEPHONYMANAGER GETDEVICEID=1] 45 99.5
2 [HTTPCLIENT EXECUTE=0, READ PHONE STATE=1] 44 99.5
2 [READ SMS=1, GET TASKS=0] 42 99.7
2 [HTTPCLIENT EXECUTE=0, TELEPHONYMANAGER GETDEVICEID=1] 40 99.7
2 [CONTENTRESOLVER QUERY=0, ACTION RECVSACTION=1] 36 99.5
2 [TELEPHONYMANAGER GETLINE1NUMBER=1, WAKE LOCK=0] 34 99.5
3 [JAVA NET HTTPURLCONNECTION CONNECT=0, CAMERA OPEN=0, JAVA NET URL GETCONTENT=0] 38 90.0
3 [JAVA NET HTTPURLCONNECTION CONNECT=0, CAMERA=0, JAVA NET URL GETCONTENT=0] 37 90.0
3 [JAVA NET HTTPURLCONNECTION CONNECT=0, CAMERA OPEN=0, INTERNET=1] 35 90.0
3 [ACCESS FINE LOCATION=0, ACTION OPENNET=1, RECORD AUDIO=0] 35 89.9
3 [BLUETOOTHADAPTER ENABLE=0, BROADCAST STICKY=0, READ CONTACTS=1] 35 89.9

Table 4 Deep-learning-based malware detection with different mixes of malicious and benign apps.

Ratio
Malware

(Training/Test)
Benign

(Training/Test)
Benign apps Malicious apps

Overall accuracy (%)
Precision (%) Recall (%) Precision (%) Recall (%)

1:1 100/100 100/100 94.06 95.00 94.95 94.00 94.50
1:1 200/200 200/200 95.52 96.00 95.98 95.50 95.75
1:1 500/500 500/500 95.69 97.60 97.55 95.60 96.60
1:2 100/100 200/200 95.15 98.00 95.74 90.00 95.33
1:5 100/100 500/500 98.01 98.60 92.78 90.00 97.17
1:10 100/100 1000/1000 97.84 99.80 97.50 78.00 97.82
1:20 100/100 2000/2000 97.99 99.80 93.65 59.00 97.86
1:50 100/100 5000/5000 99.60 99.62 80.81 80.00 99.24
1:100 100/100 10000/10000 99.62 99.92 88.57 62.00 99.54
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in advance by these softwares for signature-based
or other technology-based detection methodologies.
Therefore, we only performed experiments on the ten
popular anti-virus softwares with a total of 50 apps from
the Contagio app set in 2014.

As shown in Fig. 6, we then evaluated these ten
anti-virus softwares before and after repackaging the
test apps. The repackaging of these apps is simple,
involving just disassembling and reassembling them. In
this way, the MD5 or SHA hash values of these apps
will differ from their original values without changing
any functionality. However, we can see that most of
the anti-virus softwares experience a large drop in their
detection rate in repackaged apps. These results reveal
that most of these softwares are likely to detect Android
malware based on signature-based approaches, which
might employ a blacklist mechanism to match the hash
values of their collected malware. We can also see
that the detection accuracies of six of the softwares are
below 10%, while eight of them are below 35% in the
detection of repackaged malware. This indicates that
these anti-virus softwares are extremely vulnerable to
repackaging attacks.

Although BitDefender performs stably both before
and after repackaging, it achieves a detection accuracy
of only 72%. We must also note that BitDefender
might have collected some of our test apps and detected
them by comparing our test apps with its collected
malware, using other signature-based approaches. Even
if BitDefender did not collect any of the test apps in
advance, its 72% accuracy shows that there remains
serious challenge in real-world malware detection.

Machine-learning-based detection methods can
hardly be impaired by repackaging attacks since these
methods can characterize and detect malware using
static or dynamic analysis of Android apps to extract
a set of features. As demonstrated in our experiments,
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Fig. 6 Test on ten popular anti-virus softwares.

deep learning is probably the best machine learning
technique for Android malware detection.

5 Discussion

We consider that there are three critical issues in
machine-learning-based Android malware detection.

The first issue is the machine learning model used.
In this study, we selected deep learning because it
can learn high-level representations by associating
features from static analysis with those from dynamic
analysis, which makes it possible to better characterize
Android malware. Our experiments also demonstrated
that the deep learning model significantly outperforms
traditional machine learning models.

The second issue is the features collected. Note that
a more comprehensive and fine-grained set of features
leads to the better characterization and detection of
Android malware. For example, we combined the
features from static and dynamic analyses to achieve a
better accuracy in malware detection. In our opinion, if
a malware cannot be identified correctly, its malicious
characteristics must not have been properly learned by
the machine learning model. Note that any app defined
as a malware must have some special characteristics that
have been defined as malicious behaviors. Therefore, to
characterize and detect more types of malware, more
fine-grained features that can cover more aspects of
malware must be collected. For example, in addition
to the 192 features presented in Section 2, many other
characteristics can also be used as features, such as
the four-layer profiles generated by ProfileDroid[32],
the three tiered APIs exported by DroidScope[33], the
program semantics generated by DroidSIFT[20], and the
data-flow semantics extracted in Ref. [34].

Last but not least is the issue of training samples.
Obviously, the more types of training samples learned,
the better accuracy a classifier will achieve in malware
detection. However, the collection of Android malware
is as yet a major challenge. Therefore, researchers
and mobile users around the world should join together
to contribute their new discoveries regarding Android
malware in a public community like the Contagio
Community, which has been collecting precious mobile
malware resources for the public since 2008. In this
way, by utilizing huge app samples, users can work
together to defend against malware.

6 Conclusions and Future Work

Deep learning is a new area of machine learning
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research. In this study, we extracted a total of 192
features from both static and dynamic analyses
of Android apps and characterized malware using
a DBN-based deep learning model. We designed
DroidDetector and evaluated it with 20 000 benign
apps crawled from the Google Play Store and 1760
malwares collected from the well-known Contagio
Community and Genome Project. The results show that
using DroidDetector with a deep learning model can
achieve a superior accuracy under different conditions,
significantly outperforming traditional machine
learning techniques. At present, DroidDetector has
been deployed online for user testing. Moreover, we
delved deeper into the features that deep learning
exploits to characterize Android malware using
association rule mining techniques. The evaluation of
ten popular anti-virus softwares indicates that it is a
matter of urgency to make changes in Android malware
detection.

Much more work is necessary. First, more fine-
grained features should be extracted to characterize
Android apps. A more comprehensive and fine-grained
set of features can cover more aspects of Android
malware and thus lead to a better characterization and
detection of malware. In addition to the 192 total
features in this study, we may also add the semantic-
based features introduced in Refs. [20, 34] and types of
features presented in Refs. [32, 33] to the feature set.
In addition, richer discrete features rather than binary
features can be used in establishing the deep learning
model. For example, if one sensitive API function is
called twice or one dynamic behavior occurs twice, we
can set their corresponding feature values as 2 (i.e.,
discrete values) instead of 1 (i.e., binary values). And
second, more app data (i.e., more types of malicious
and benign samples) should be collected for training the
deep learning model. More types of training samples
could lead to a better optimization of the deep learning
model, and thereby achieve a superior accuracy in real-
world Android malware detection.
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